Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Arun Prasad, ${ }^{\text {a* }}$
 Babu Varghese ${ }^{\text {b }}$ and M. V. Sangaranarayanan ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036, India, and ${ }^{\mathbf{b}}$ Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, Chennai 600 036, India

Correspondence e-mail:
arunprasad@chem.iitm.ac.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$
R factor $=0.058$
$w R$ factor $=0.198$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

4-Bromo-2,6-dichloroaniline

The title compound, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrCl}_{2} \mathrm{~N}$, crystallizes in the space group $P 2_{1} / c$ with two molecules in the asymmetric unit. Molecules related by an a-axis translation are stacked over each other, bound by $\pi-\pi$ interactions. Molecules in adjacent stacks are linked to each other through weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

The title compound, (I), was synthesized for a study of the electrochemical reductive cleavage of carbon-halogen bonds (Arun Prasad \& Sangaranarayanan, 2004). It crystallizes with two molecules in the asymmetric unit. The average $\mathrm{C}-\mathrm{Br}$ and $\mathrm{C}-\mathrm{Cl}$ bond lengths of 1.895 and $1.743 \AA$ are in excellent agreement with the standard values of 1.899 (12) and 1.739 (10) Å, respectively (Allen et al., 1987).

(I)

Molecules related by an a-axis translation are stacked over each other and the perpendicular distance between the stacking planes is $3.596 \AA$ (Fig. 2). It is, therefore, inferred that the stacked molecules are bound to each other by $\pi-\pi$ interactions (Hunter \& Sanders, 1990). The stacked columns are weakly linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1).

Experimental

2,6-Dichloroaniline (21 g) was added to 6 M hydrochloric acid $(120 \mathrm{ml})$ with continuous stirring. After complete dissolution of 2,6-

The molecular structure of the asymmetric unit of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 28 January 2005
Accepted 1 February 2005
Online 26 February 2005
dichloroaniline, bromine vapour was passed into the solution, during which the reaction flask was cooled with ice. When the solution attained a yellow colour, the passage of bromine vapour was stopped and the final product was a dark pasty mass. Crude 4 -bromo-2,6dichloroaniline was filtered off, washed well with water and thoroughly dried. It was then purified by column chromatography (silica gel) using hexane as eluent; slow solvent evaporation produced colourless crystals of (I).

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrCl}_{2} \mathrm{~N}$
$M_{r}=240.91$
Monoclinic, $P 2_{1} / c$
$a=4.015$ (3) \AA
$b=15.41$ (1) \AA
$c=25.730(5) \AA$
$\beta=91.22$ (7) ${ }^{\circ}$
$V=1591.6(16) \AA^{3}$
$Z=8$
$D_{x}=2.011 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10-15^{\circ}$
$\mu=5.75 \mathrm{~mm}^{-1}$
$T=23(2) \mathrm{K}$
Block, colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 4$
$k=0 \rightarrow 18$
$l=-30 \rightarrow 30$
2 standard reflections
frequency: 60 min intensity decay: none
2796 independent reflections
1287 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.198$
$S=1.00$
2796 reflections
182 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1152 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.66 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \operatorname{SHELXL97} \\
& \text { Extinction coefficient: } 0.0043 \text { (11) }
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N}^{2}{ }^{\mathrm{i}}$	0.86	2.39	$3.148(11)$	147
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N}^{1 i}$	0.86	2.41	$3.199(11)$	152

Symmetry codes: (i) $1+x, y-1, z$; (ii) $x, 1+y, z$.
All H atoms were positioned geometrically and were refined using the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier atom) and $\mathrm{C}-\mathrm{H}=0.93 \AA$ or $\mathrm{N}-\mathrm{H}=0.86 \AA$.

Figure 2
A packing diagram of the title compound, viewed down [100].

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

MAP thanks the CSIR, India, for the award of a Senior Research Fellowship. The authors gratefully acknowledge the instrumentation facility provided by SAIF, IIT Madras.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Arun Prasad, M. \& Sangaranarayanan, M. V. (2004). Tetrahedron Lett. 45, 4741-4744.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hunter, C. A. \& Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

